Raman scattering study of delafossite magnetoelectric multiferroic compounds: CuFeO2 and CuCrO2.
نویسندگان
چکیده
Ultrasonic velocity measurements on the magnetoelectric multiferroic compound CuFeO(2) reveal that the antiferromagnetic transition observed at T(N1) = 14 K might be induced by an R3m --> pseudoproper ferroelastic transition. In that case, the group theory states that the order parameter associated with the structural transition must belong to a two-dimensional irreducible representation E(g) (x(2) - y(2), xy). Since this type of transition can be driven by a Raman E(g) mode, we performed Raman scattering measurements on CuFeO(2) between 5 and 290 K. Considering that the isostructural multiferroic compound CuCrO(2) might show similar structural deformations at the antiferromagnetic transition T(N1) = 24.3 K, Raman measurements have also been performed for comparison. At ambient temperature, the Raman modes in CuFeO(2) are observed at ω(E(g)) = 352 cm(-1) and ω(A(1g)) = 692 cm(-1), while these modes are detected at ω(E(g)) = 457 cm(-1) and ω(A(1g)) = 709 cm(-1) in CuCrO(2). The analysis of the temperature dependence of the modes in both compounds shows that the frequencies of all modes increase with decreasing temperature. This typical behavior is attributed to anharmonic phonon-phonon interactions. These results clearly indicate that none of the Raman active modes observed in CuFeO(2) and CuCrO(2) drive the pseudoproper ferroelastic transitions observed at the Néel temperature T(N1). Finally, a broad band at about 550 cm(-1) observed in the magnetoelectric phase of CuCrO(2) below T(N2) could be associated with magnons.
منابع مشابه
Raman spectroscopic studies of CuFeO2 at high pressures
Structural stability of a multiferroic compound CuFeO2 belonging to the delafossite family has been investigated at high pressures using in-situ Raman spectroscopy. At ambient conditions, CuFeO2 has a rhombohedral structure with space group R3m. It has two Raman active modes, identified as Eg and A1g. Both Raman mode frequencies harden with pressure. At 18 GPa, the doubly degenerate mode Eg spl...
متن کاملLandau Analysis of the Symmetry of the Magnetic Structure and Magnetoelectric Interaction in Multiferroics
This paper presents a detailed instruction manual for constructing the Landau expansion for magnetoelectric coupling in incommensurate ferroelectric magnets, including Ni3V2O8, TbMnO3, MnWO4, TbMn2O5, YMn2O5, CuFeO2, and RbFe(MO4)2. The first step is to describe the magnetic ordering in terms of symmetry adapted coordinates which serve as complex-valued magnetic order parameters whose transform...
متن کاملPreparation of delafossite CuFeO2 thin films by rf- sputtering on conventional glass substrate
CuFeO2 is a delafossite-type compound and is a well known p-type semiconductor. The growth of delafossite CuFeO2 thin films on conventional glass substrate by radio-frequency sputtering is reported. The deposition, performed at room temperature leads to an amorphous phase with extremely low roughness and high density. The films consisted of a well crystallized delafossite CuFeO2 after heat trea...
متن کاملInfluence of nonmagnetic Zn substitution on the lattice and magnetoelectric dynamical properties of the multiferroic material CuO
Dynamic magnetoelectric coupling in the improper ferroelectric Cu1−xZnxO (x = 0, x = 0.05) was investigated using terahertz time-domain spectroscopy to probe electromagnon and magnon modes. Zinc substitution was found to reduce the antiferromagnetic ordering temperature and widen the multiferroic phase, under the dual influences of spin dilution and a reduction in unit-cell volume. The impact o...
متن کاملFacile hydrothermal synthesis of CuFeO2 hexagonal platelets/rings and graphene composites as anode materials for lithium ion batteries.
Delafossite CuFeO2 hexagonal platelets/rings and graphene composites were synthesized by a low temperature hydrothermal method. The formation mechanism of CuFeO2 hexagonal platelets/rings follows the combined effects of both GO and NaOH. The obtained composites as anode materials display a good battery performance with high reversible capacity, good rate capability and cyclic stability.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 24 3 شماره
صفحات -
تاریخ انتشار 2012